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1. Introduction

In the absence of any direct test of string theory, cosmology remains the best laboratory

with which to test string theoretic models [1]. Over the past few years we have witnessed

cosmology become a precision science, with COBE, WMAP and SDSS [2] providing crucial

support for the flatness of the universe, the existence of dark energy and for a period of

cosmic inflation. Whilst the dark energy puzzle remains an outstanding problem for theo-

retical physics in general [3], inflation has been a carefully developed paradigm with many

explicit models. Unfortunately as far as inflationary model building is concerned, there

are still many problems to be resolved. Particularly since many of the models suffer from

super-Planckian VEV’s for the inflaton field [1], and therefore find themselves in a region

where quantum gravity effects are non-negligible. Conversely the lack of a background in-

dependent formulation of string theory has prevented the explicit construction of top-down

models, and much of string cosmology has been done explicitly at the field theory level.

Whilst there is nothing wrong with this in principle, many of the models are somehow

missing much of the underlying string theoretic structure which is where we would expect

the more interesting physics to emerge.

There are indications that this picture is about to change [1]. Our understanding of

both geometric [4] and non-geometric flux compactifications [5] of type II string theory

has increased immeasurably in recent years, allowing for the construction of more realistic

inflationary models [8]. Additionally models emerging from heterotic M-theory [13] can

also now be placed on a more secure footing, and may yet unify both the standard model

and inflaton sectors. Of course there remains much work to be done, but the general

prognosis is that inflationary model building will only improve.
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One of the simpler models of string inflation relies on the motion of branes, where the

inflaton is now reflected in terms of geometry. Either as the distance between a pair of

D3 − D̄3-branes [10], or as the distance between a single brane and some reference point

in a warped throat [9]. These models are especially appealing, not just because of their

simplicity, but because the inflaton is an open string mode which will vanish at the end of

inflation and therefore one doesn’t need to worry about how it interacts with the standard

model sector [35]. In the light of recent developments in type IIB flux compactifications, and

the existence of a potential multitude of warped throats with which to resolve the hierarchy

problem, these models have become even more appealing. Given the vast number of free

parameters that we often find in string model building, it is relatively easy to construct

a model that satisfies the WMAP data. Therefore we should be interested in predictions

that can be ruled out. These should not be regarded as being deficiencies of string theory,

on the contrary in fact, as we are narrowing the parameter space with each one eliminated.

Much of the community is now involved in determining which signatures of a particular

model can be tested. Indeed many of them rely on bounds placed on cosmic (super)string

formation during or after inflation [6].

One particular model based on the non-linear structure of the DBI action itself, named

DBI inflation [11], has an interesting signature in that it predicts large levels of non-

Gaussian perturbations during inflation [24]. This is important since the result is ap-

parently background independent [1]. There has been much work on this model and its

implications [20 – 23], but the general consensus now is that the simplest scenario is no

longer viable. This means it is essential for us to develop more realistic variations of this

model [15 – 17]. There have been several proposals for extending this work, ranging from

multi-brane configurations to branes wrapping non-trivial cycles. Although these exten-

sions are able to satisfy the experimental bounds, there is still some concern about the

range of validity of such models.

In this paper we will initiate an investigation into the multi-brane proposal of [17], and

begin to institute higher order corrections to the action [31]. In this case the corrections

we are interested in are the 1/N corrections in the large N limit. These corrections are

important as the primary constraint on the model is that N ≪ M , where N is the number

of branes and M is the total flux in a throat. In the compact case we know that M is

bounded from above, by considering compactification of F-theory onto Calabi-Yau (CY)

four-folds [4], and therefore this restricts the number of dynamical branes accordingly.

The large N limit ensures that the action simplifies, moreover the relevant physical scales

are either suppressed or enhanced by this large number allowing us to evade many of the

tight constraints. However assuming large N also means that the backreaction could be

dangerously out of control. What we would like is therefore to keep N relatively large

but also understand how some of the 1/N corrections alter things. Given the highly non-

linear structure of the DBI even at leading order, we expect that these corrections will

be analytically complicated. Therefore rather than search for concrete models of inflation

we will restrict ourselves to analysis of the interesting observables associated with DBI

inflation. In short we will be interested in i) how the corrections alter the sound speed

and ii) how the corrections alter the prediction of large non-Gaussianity. We leave a more
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detailed investigation of the model dynamics to another publication.

In section II we will introduce the action for the multi-brane configuration we are

describing and its features. We will also demonstrate how this is equivalent to a model

based on a D5-brane wrapping a two-cycle and carrying flux along its internal directions -

and therefore overlapping with the model proposed in [19]. In section III we will show how

these 1/N corrections can be implemented, and how they alter the leading order behaviour

of the Lagrangian. We will then investigate how the corrections alter the predictivity of

the model. In the final section we will consider an alternative model using a similar set-up,

but we will use the group representation space as the inflationary phase space.

2. Multiple brane inflation

Our primary interest here is to study DBI inflation driven by multiple branes in a warped

geometry [15 – 17, 32]. By now there is a considerable mass of evidence to suggest that

the simplest D3-brane scenario does not lead to new physically observable signatures, and

is therefore indistinguishable from standard slow roll inflaton models [18, 19]. As a result

we must beyond the simplest models, and search for other regions of solution space which

could give us inflationary trajectories. Perhaps the next simplest approach, which we will

consider here, is to replace the single brane by N D3-branes and study the corresponding

dynamics. In particular we will consider the case where all the branes are localised at

distances less than the string length. In terms of the world-volume field theory this means

that we are studying the U(N) theory rather than the U(1)N theory [28, 29]. This differs

significantly from a theory of N -branes that are separated at larger distances [15, 16],

which will fall into the class of Assisted Inflation [12]. What is important in these models

is that each of the N -fields follow an attractor trajectory so that we can treat each field as

having an equal contribution to the Hubble scale. If they do not, then we will generally find

signatures of isocurvature modes. Although these were shown to be suppressed in the case

of DBI inflation [15]. Other models using the large N limit typically involve axions [14, 25].

Unlike in the case of a single D-brane, the action for multiple coincident branes is still

unknown. As a leading order solution we will employ the use of the Myers action, which is

known to deviate from the full string theory scattering amplitude at O(F 6) [28]. However

despite this not being the full solution, it will almost certainly be part of the full solution -

and therefore one should regard our model building program as being the first step towards

the complete string description.

One may also regard this solution as being more generic than the single brane models -

since we expect these objects to be created quantum mechanically at the end of brane/flux

annihilation [32]. Tuning the fluxes to ensure that only a single D3-brane emerges through

this process imposes additional fine tuning of the parameters, and is often unsatisfactory.

Moreover the annihilation itself is reasonably well understood, and the residual branes will

find themselves localised in the IR end of a warped throat [20]. The relevant physical scales

are thus significantly red-shifted with regard to an observer sitting in the bulk space, and

one hope is that the standard model will be localised upon some intersecting brane stack

in another throat.
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We will take the ten-dimensional background metric to be of the following form, which

can be regarded as a cone over the base space X5

ds2
10 = h2gµνdxµdxν + h−2(dρ2 + ρ2dX2

5 ) (2.1)

where the radial direction is parameterised by ρ rather than r since the latter is often

assigned to the ratio of tensor to scalar perturbations. The factors of h are the warp

factors for the geometry, and are functions of the transverse coordinates. For simplicity we

will set all gauge fields to zero, and in addition we will assume that the NS two-form B(2) is

also zero1 since this simplifies things considerably. We assume that the warped inflationary

throat is one of many throats glued onto the internal Calabi-Yau space, although the gluing

is a model dependent effect and may well induce corrections to the flux induced potential [4]

We will assume that the Chern-Simons sector consists solely of the RR four-form C(4), and

that this is simply proportional to the warp factor.

The relevant contribution to the Myers action [28] can be written as follows

S = −Tp

∫

dp+1ξSTr

(

√

−det(Êµν + Êµi(Q−1 − δ)ijÊjν)
√

detQi
j

)

(2.2)

supplemented by the non-Abelian Chern-Simons contribution

SCS = µp

∫

dp+1ξSTr
(

eiλiφiφ
∑

Ĉ(n)
)

. (2.3)

Let us explain the terminology used above. Firstly the scalar fields are now matrix valued,

and therefore we require a prescription for taking their trace. This is done using the

symmetrised trace, which requires us to take the fully symmetric averaging over all possible

orderings before taking the trace. This is required in order to reproduce the known (lowest

order) string scattering amplitudes. The kinetic term in the action contains the matrix Qi
j,

which also appears as a potential term. This matrix is explicitly given by

Qi
j = δi

j + iλ[φi, φk]Ekj (2.4)

and we will work to leading order in its expansion. The metric Eµν is a linear combination

of the metric and NS two-form, although in our simplistic scenario it reduces to the metric

only. Greek indices run over the non-compact directions, whilst roman indices correspond

to the transverse directions. As usual hats denote pullbacks of the space time fields to the

world-volume. The Chern-Simons term involves a summation over all possible RR fields

present in the theory, coupled to an expansion of so-called interior derivatives. Usually the

Chern-Simons term involves coupling to lower degree form fields through the introduction

of non-vanishing Chern classes, the introduction of the interior derivatives also induces

couplings to higher dimensional form fields through their action

iφiφC(p) =
1

2
[φi, φj ]C

(p)
ji (2.5)

1In the Klebanov-Strassler geometry [30] the two-form runs logarithmically with the radial displacement,

and so can be tuned to vanish near the tip of the throat.
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and so the Chern-Simons action can be written schematically in the form

SCS ∼
∫

dp+1ξ
(

C(p+1) + iλiφiφC(p+3) + . . .
)

. (2.6)

Our interest is in coupling this system to four-dimensional Einstein gravity. Since in our

solution the dilaton is fixed at zero - there is no concern about string frame effects.2

The transverse scalars in this instance are now matrices, and we choose the fields to be

proportional to generators of a non-Abelian gauge group. Since there is often a transverse

S2 present in these models, we choose the group to be SO(3) ∼ SU(2) to reflect this

transverse symmetry. As a result we have the following ansatz for our fields

φi = R(t)αi (2.7)

where αi are the irreducible representation of the SU(2) algebra. We then plug this ansatz

into the action and follow the prescription discussed in [17] to obtain the action. Let us

simply state the relevant results. The diagonal components of the energy momentum tensor

can be written as follows

ρ = NT3

(

Wh4γ − h4 + V (φ)
)

P = −NT3

(

Wh4γ−1 − h4 + V (φ)
)

(2.8)

where γ = (1− φ̇2/(h4T3))
−1/2 and W = (1+4φ4/(h4λ2T 2

3 C2))
1/2 are the relativistic factor

and the fuzzy potential terms respectively. Note that C2 is the quadratic Casimir of SU(2),

which is related to the number of branes through the relation C2 = N2 − 1. We will keep

the explicit dependence on the Casimir, although it should be noted that we have already

assumed that 1/N2 terms are negligible in obtaining the above expressions. The scalar

potential V (φ) has been included in order to account for other brane/flux interactions

which may be present. The expression for the sound speed is also the same as in single

brane models [11]

C2
s =

1

γ2
(2.9)

which implies that the level of non-Gaussian fluctuations should be independent of N ,

which is a somewhat surprising result.3 The fact that the large N limit gives the same

speed of sound as the single brane model is actually not surprising, since (as we will show

in the next section) this configuration actually has a dual interpretation in terms of a single

wrapped brane [28]. As is well known, in the full warped deformed conifold solution [30]

the second Betti number of this background is zero which means that there are no stable

non-trivial two-cycles within the geometry. This implies that any brane wrapped along

this cycle can shrink to a point. However one way to stabilise the brane on this cycle is to

turn on F1-string charge. Thus our string solutions will typically have to carry some extra

U(1) gauge theory on their world volumes.

2Although this means that the string coupling is essentially unity.
3The N dependence plays a role in setting the scale of the amplitude fluctuations [17].
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The important prediction of DBI inflation is that it can lead to large levels of non-

Gaussian fluctuations [11, 18, 21]. The current sensitivity of the WMAP data at the 0.95

confidence level [2] only places the minimal bound on these fluctuations to be

−256 < fnl < 332. (2.10)

If one also assumes that the scalar perturbations are given by ζ = ζL(1− 3/5fnlζL), where

ζL denotes the linearised Gaussian perturbations, then one can derive the following three-

point function in momentum-space [24]

< ζ(k1)ζ(k2)ζ(k3) >= (2π)7δ3(k1 + k2 + k3)

∑

i k
3
i

Πik3
i

(

−3fnl

10
(P ζ

k )2
)

(2.11)

where P ζ
k is the scalar amplitude in momentum space. Now the non-Gaussianity amplitude

fnl has six contributions, of which only two are relevant for DBI inflation since the others

are of order of the slow roll parameters. In the equilateral triangle limit, where all three

momenta are equal, we can approximate the amplitude of these fluctuations through the

following expression

fnl =
35

108

(

1

C2
s

− 1

)

− 5

81

(

1

C2
s

− 1 − 2Λ

)

(2.12)

where the Λ function is determined through the following relation

Λ =
X2P,XX + 2

3X3P,XXX

XP,X + 2X2P,XX
(2.13)

where we have defined X = φ̇2/2. For slow roll inflation, the sound speed is always unity

and moreover there are no contributions to the Λ term therefore fnl ∼ 0. However for DBI

inflation, both for a single brane and for a large number of coincident branes, the sound

speed is small. The result4 is that fnl ∼ 0.32γ2 and therefore could be observable for large

γ. In practice this provides us with a tight constraint on the allowed range of γ, which

we can use to tune the inflationary scale. One important thing to note about this result

is that the solution is independent on the warp factor of the background, and is therefore

a universal result even though the inflationary solutions are background dependent. Of

course γ is itself a function of the warping, however once we treat this as being a variable

in itself we see that there is no additional warp factor dependence. However the running

of the non-Gaussian amplitude, which is approximately given by nnl − 1 ∼ −2s where

s = Ċs/(CsH), is sensitive to the particular choice of background.

The relevant cosmologically observable scales are set through the size of the Hubble

parameter, which we define as

H2 =
ρ

3M2
p

(2.14)

4We are using the conventions of [24], which maybe of the opposite sign to those employed by the WMAP

normalisation [2].
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where we are using the reduced Planck mass as is usual in String cosmology. An important

relationship between the four-dimensional physics and the ten-dimensional physics is set

through the definition of the four-dimensional Planck scale5

M2
p =

V w
6

κ2
10

(2.15)

where V w
6 =

∫

d6χ
√

gh(χ) is the warped six-dimensional volume, and κ2
10 = 1

2(2π)7g2
sα

′4

is the ten-dimensional Newtons constant. This relationship is crucial when discussing the

Lyth bound on the allowed range for the inflaton field. In the single brane models it was

shown that a relativistic inflaton was not compatible with this bound, when normalised

to the WMAP 3 data. However the multi-brane model contributes an additional factor of√
N to the allowed field range, and is therefore able to by-pass these stringent conditions

and therefore still provides a testable prediction [17 – 19]. Of course the fact that large N

will also lead to back-reaction on the geometry implies that our solution must be extremely

fine-tuned, But we will return to this issue in a later section. As an approximation we can

assume that the warped volume factorises into the bulk (CY) contribution, and the throat

contribution. It is readily noted that the throat volume is given by

Ṽ6 ∼ Vol(X5)

∫ ρc

0
dρ

ρ5

h4
(2.16)

where ρc corresponds to the UV cutoff in the throat. In some models this cutoff will

be taken to the the place where the throat is glued to the CY, whereas in other models

the cutoff will represent the limit of reliability of the theory. In the expression note that

Vol(X5) is dependent on the explicitly choice of five-dimensional manifold, but its volume

will always scale like aπ3 where a is some constant which is in the range O(100 − 101). As

a result the Planck mass can be assumed to be bounded through the relationship

M2
p >

Ṽ6

κ2
10

(2.17)

For inflationary trajectories we typically demand that NT3V dominates the contribution to

the Hubble scale in (2.14). In the usual DBI model this implies that V ≫ h4(γ− 1), which

can be achieved even for relativistic rolling provided that the warp factor suppression is

large enough. However one must be more careful when in the slow roll regime if this is

not satisfied. Generally the warping will be exponentially suppressed, and is a function

of the flux ratio. With appropriate fine tuning of these fluxes one would anticipate that

the warping can be sufficiently small. In our model we find a slightly modified bound

compared to the previous case given by V ≫ h4(Wγ − 1), and we must also ensure that

M/N ≫ 1 in order for the back reaction to be negligible. Now the fuzzy potential W is

bounded by unity from below, and is typically an increasing function of φ (depending upon

the interplay with the warp factor). This means that the relevant scale is now set by Wγ

and not just γ. This gives rise to a two-dimensional parameter space, and therefore access

to a larger range of inflationary trajectories.

5See [25] for recent discussion of this point.
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First notice that for solutions where W ∼ 1, the potential constraint reduces to the

usual D3-brane models. However we must also supplement this with the W-condition

which imposes a bound on the inflaton range

V (φ) ≫ h4(γ − 1) → φ2 ≪ M2
s h2

√
C2

8π2gs
. (2.18)

This illustrates the sensitivity of the field to the warping, the string scale and the coupling

constant. For solutions where the warp factor approaches a constant (i.e position inde-

pendent) the solution will be sensitive to the UV cutoff. Let us assume that the maximal

allowed value for the inflaton is given by φc = ρc

√
T3. In turn this means that the W-bound

becomes a bound on the number of branes, and we see that

Nconst <
M2

s ρ2
c

πh2
(2.19)

suggesting that it is more preferable for the warp factor to be constant over longer distances.

For semi-explicit string models the warping will typically be of the form h ∼ h0±h1ρ
α+. . .,

in which case the cutoff corresponds to the maximal allowed value of ρ that allows us to

neglect the ρα terms. Alternatively we can consider backgrounds such as AdS5 × X5, in

which case the normalised warping is given by h ∼ φ/(R
√

T3) where R4 = 4πgsMl4s is the

usual curvature of the AdS geometry and M is the total background flux. Combining the

W-condition with the flux constraint gives us the following (weak) bound on N , namely

NAdS5
≫ 4gs

π
. (2.20)

without having to resort to imposing the Lyth bound [18].

The W ∼ 1 limit essentially maps onto the single-brane case, therefore the more

interesting limit is to consider solutions where W ≫ 1, implying that the bound on the

potential becomes:

V (φ) ≫ 8π2h2φ2gs

M2
s

√
C2

(2.21)

where we have used the fact that the W-condition demands that φ2 ≫ M2
s h2

√
C2/(8π

2gs).

This latter solution requires the warp factor to be extremely small if we wish to consider

IR inflation [20], as we still want the solution to consist of perturbative string states.

On cosmological scales we see from (2.14) that inflation will impose an additional

bound on the number of branes, since we require H2 ≫ m2
φ, where mφ is the inflaton mass

which arises from the subleading terms in the potential (at least for IR inflation). This

means we can write a bound on N through the relation

N ≫ 24π3gs

(

M2
p m2

φ

M4
s

)

. (2.22)

Note that this is sensitive to the splitting between the inflationary scale and the string

scale. For us to be confident about neglecting the backreaction we require N to be as small

as possible whilst still allowing the 1/N2 terms to be negligible. This suggests that the
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string scale should be high in these models, in which case the inflaton mass only need be

of order the GUT scale. In a fully compactified theory, we could also use the F-theory

tadpole constraint to view this as an additional constraint upon the ratio m2
φ/M4

s , since

the fluxes are bounded by the Euler number of the particular Calabi-Yau [4, 18].

Let us restrict ourselves to the case of relativistic motion, where we approximate φ̇ ∼
h4T3 which gives us the inflaton equation of motion for a choice of warp factor. For

constant warping the solution is φ(t) ∼ φ0 +h2
√

T3(t− t0), whilst for AdS space it becomes

φ ∼ φ0exp(
√

T3(t − t0)/R). The relativistic limit is of interest because this is the regime

where the non-linearities play an important role. For the non-relativistic case we refer the

reader to [23]. The equation for the conservation of energy gives us a term on the r.h.s.

which goes like −3HNT3h
4Wγ(1−O(γ−2)) however we can neglect the 1/γ2 terms as we are

assuming the relativistic limit. Combining this with the Hamilton Jacobi formalism, where

we assume a monotonic trajectory for the inflaton field, we see that the first cosmologically

relevant parameter becomes [7]

ǫ1 = − Ḣ

H2
∼

2M2
p

NW∗γ∗

(

H ′
∗

H∗

)2

(2.23)

which is a slight modification of the usual DBI ’fast roll’ parameter. In the solution

above note that a prime denotes differentiation with respect to φ, and ∗ denotes that the

parameter is evaluated at horizon crossing. The other two relevant terms are written below

ǫ2 =
φ̈

Hφ̇
ǫ3 =

Ḟ

2HF
(2.24)

where F = P,X + XP,XX as usual. The resulting expressions reduce to the following

ǫ2 = −
2M2

p

NW∗γ∗

(

H ′
∗

H∗

)(

H ′′
∗

H ′
∗

− W ′
∗

W∗
− γ′

∗

γ∗

)

ǫ3 = −
M2

p

NW∗γ∗

(

H ′
∗

H∗

)(

W ′
∗

W∗
+

3γ′
∗

γ∗

)

. (2.25)

Note that typically we will find W ′/W ≥ 0 which therefore makes the relevant parameters

more negative. Assuming the validity of the fast roll expansion, namely that ǫi ≪ 1, we

see that the spectral indices for the curvature and tensor perturbations may be written as

follows

ns = 1 − 2(2ǫ1 + ǫ2 + ǫ3)

nt = −2ǫ1 (2.26)

or in terms of the generalised background parameters

ns = 1 − 2M2
p

NW∗γ

(

H ′
∗

H∗

)(

4H ′
∗

H∗
− H ′′

∗

H ′
∗

− 2γ′
∗

γ∗

)

nt = −
4M2

p

NW∗γ∗

(

H ′
∗

H∗

)2

. (2.27)
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Note that because the solutions of interest correspond to large γ, we see that nt is actually

independent of the fuzzy potential. One can see this because once we write γ as a function

of φ we find that in the ultra-relativistic regime

Wγ ∼
2M2

p |H ′|√
T3h2N

(2.28)

and therefore the relevant scalar tilt is only a function of H and its derivatives. Now the

relevant amplitudes for these perturbations in a de-Sitter background have been calculated

for all the most general cases of interest [7]. We repeat them here for convenience

P2
s ∼ H2

∗

8π2M2
p ǫ1∗Cs∗

P2
t ∼ 2H2

∗

π2M2
p

. (2.29)

Note that, as usual, the inflaton doesn’t mix with gravitational modes and so there is no

additional field dependence in this amplitude besides the contribution to the Hubble scale.

Typically in IR models of DBI inflation [20, 18], the inflaton potential will be of the

form V ∼ V0 − m̃2φ2 + . . ., where we have omitted the subleading corrections. In the

notation of this paper m̃ has units of (mass)−1 and therefore corresponds to some length

scale, which is different to the inflaton mass scale6 mφ =
√

T3m̃. In any event this leads to

the approximation
(

H ′
∗

H∗

)

∼ −m̃2φ∗

V0
. (2.30)

Using this as our basis we can work out the detailed inflationary dynamics of this config-

uration in arbitrary backgrounds once we specify the form of the harmonic function. An

interesting example is when we consider h ∼constant as in the Klebanov-Strassler (KS)

throat [30]. In terms of observable signatures, the most useful turns out to be the tensor

index, which is given by

nt ∼ −2NV 2
0

(

1 −
3M2

p m̃2Ne

N2V 2
0

)

(2.31)

where Ne is the number of e-foldings before the end of inflation. If the term in brackets

is close to zero, then ǫ1 ∼ 0 and inflation occurs rapidly. However if this term is still

appreciable then we see that the tensor index goes like N and is therefore an interesting

observable. This has been discussed at length elsewhere [17], so we will not mention it

further here.

2.1 The dual picture

Let us now demonstrate how this configuration is related to that of a wrapped D5-

brane [19]. In order for this configuration to exist we must ensure that there is two-

cycle within the transverse space that our D5-brane can be wrapped upon. If we fac-

torise the compact metric into products of spheres, then the metric can be factorised into

6We hope this will not further confuse the reader. We have tried to keep the overall dimensionful

quantities as pre-factors throughout the paper.
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dψ2 + sin2 ψdθ2 + . . . and we will choose our internal embedding coordinates to be (ψ, θ).

The remaining world-volume coordinates are extended in the non-compact directions as

usual. For this wrapped configuration to be dual to the one introduced in the previous

section, we must ensure that there is a non-zero U(1) ’magnetic’ flux on the world-volume.

In order not to break Lorentz invariance, this flux must lie along the compact directions.

In fact the introduction of the magnetic charge will not stabilise the configuration, as it is

well known that non-zero electric charge is required for full stabilisation of the cycle. For

simplicity we shall also only consider the leading order Chern-Simons contribution to the

action. The introduction of world-volume flux also allows for non-trivial contributions to

the pullback of the C(4), but we will ignore these effects in this section. Calculation of the

DBI part of the action results in the following expression

S = −T5

∫

d6ξh4
√

1 − h−4ρ̇2
√

h−4ρ4 sin2 ψ + λ2F 2
ψθ. (2.32)

Since the magnetic field is fully localised in the compact directions, it should be proportional

to the cycle volume so we will take the following ansatz for the flux where there are N

units of charge

F (2) = Nω2 (2.33)

where ω2 is the two form on the transverse S2. This choice of field simplifies the full action

tremendously and we can find

S = −2πT5

∫

d4ξ
(

h4
√

1 − h−4ρ̇2
√

h−4ρ4 + λ2N2 − h4λN
)

(2.34)

where we have included the contribution coming from the Chern-Simons term, and also

integrated out the compact directions. If we now factorise this expression and use the

following relation T5/T3 = M2
s /(4π2), and also switch to the canonical field description

where φ = ρ
√

T3, then the brane contribution to the Lagrangian density becomes

L = −NT3h
4
(

γ−1W − 1
)

(2.35)

where both W and γ are the functions derived in the previous section (provided one takes

the large N limit). Another consequence of the nature of this picture is that we can

understand why the backreaction of the D5-brane is non-negligible, since the dual picture

consists of N -coincident branes - which perturb the background due to their cumulative

mass. One should also note that this configuration should also be dual to a D7-brane

wrapping a non-trivial four-cycle, provided that the D7-brane has a non-vanishing second

Chern-Class so that the action will contain a coupling of the form
∫

C(4)∧F ∧F . Therefore

one could start building inflationary models from the D7-brane perspective by including

additional world-volume flux in the compact directions.

The dual nature of this model suggests that we can consider the cosmology of either

N coincident D3-branes, or a single wrapped D5-brane with N units of magnetic charge.

This latter description has recently been investigated in [19]. One important consequence of

this description is that the moving D5-brane naturally excites its U(1) world-volume gauge
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fields. This suggests that the multi-brane configuration will also excite its world-volume

fields, which will now of course be charged under the U(N), and therefore the standard

model degrees of freedom will be reheated. In the single brane scenario, the inflaton

sector is gravitationally coupled to the standard model sector and the expectation is that

reheating will occur through tunneling of the KK modes between the inflaton throat and

the standard model throat. Whilst this is a reasonably robust mechanism, the U(1) gauge

boson associated with the open string modes on the D3-brane will remain a relevant degree

of freedom and therefore at least some of the inflationary energy will go into exciting these

string states [35]. Whilst this remains a hidden sector from the standard model perspective,

the open string excitations should still provide a definite physical signature and it would

be interesting to work this out in detail. The multi-brane model does not suffer from this

problem, since the inflationary energy is expected to be dumped into open string states at

the end of inflation with only a small amount emitted via tunneling. However the brane

configuration will be near the UV end of the throat and so one must understand how

the branes will backreact on this internal geometry in order to discuss their evolution in

this region. Moreover since the branes are all assumed to be parallel, there will not be

any chiral fermions in the spectrum. There are potentially two ways in which this can be

alleviated. Firstly one could assume that the dynamical brane stack intersects with another

(stationary) stack localised at the tip of another throat, in which case the symmetry group

will be enhanced to U(N) × U(N ′) which will give rise to both adjoint and fundamental

matter. The second possibility is that although the branes are within a string length of one

another, they may not be exactly parallel and therefore could be sensitive to tidal forces

or the exact profile of the unstable potential. This means that some of the branes may be

intersecting, but at initially unobservable scales. Alternatively one may imagine that the

dynamically induced fluctuations will lead to some branes intersecting. It is important to

develop these ideas in more detail in order to understand how the inflaton sector couples

to the standard model, since this is a particularly weak area for these models [35].

Since we know from the wrapped D5-brane picture that backreactive effects can be

important, we should also try to understand how they might emerge in the multi-brane

case which we attempt to address in the following section.

3. Including 1/N corrections

Our results have been written explicitly in terms of N and C2 = N2 − 1, and so we could

clearly incorporate 1/N corrections simply by keeping the 1/N2 pieces of the quadratic

Casimir. However we must seek to ensure that there are no other corrections appearing at

this order which could cancel these terms. We can do this by considering the corrections

coming from the symmetrised trace prescription.

Whilst the full non-Abelian DBI action remains unknown, we know that the Myers

prescription agrees with the wrapped D5-brane description in the large N limit [28]. We

also know from string scattering amplitudes that we must include some symmetrisation [29]

if we are to project out unwanted terms at leading order. This suggests that we should

at least consider the possibility that symmetrisation terms could play a role in the full
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description of the non-Abelian action. This our proposal here is certainly not the full

solution, but will comprise part of it.

Recall that our main focus was on the large N limit in obtaining the action for the

inflaton. We would like to go beyond this approximation to capture the next leading order

corrections [31], and see if they alter the dynamics of the solution. The question we need

to address is therefore how does symmetrisation affect the gauge trace? Since our D3-

brane solution has no world-volume gauge fields, the only terms to be traced over are the

generators of the SO(3) algebra. Therefore our question reduces to a simpler one, namely

calculating the symmetrised trace over these generators. This is actually just a question

of combinatorics, however we can use an alternate description in terms of chord diagrams,

or so called ”bird track” diagrams.

Let us introduce the following graphical description of the group generator αi using

(αi)
a
b =

a b

i

where the i runs from 1 → 3 and a, b are matrix labels. to reflect the fact that we are in

the adjoint representation. Now our generators will come in pairs, so our problem amounts

to determining the solution of STr(αiαi)n in order to calculate the full solution once we

expand the square root terms of the DBI action. Let us focus on the case n = 1 initially.

In this case we must join multiply the two generators together, and then trace over the

gauge index. In our graphical notation this amounts to joining the free ends of the line to

make a circle. Thus we see that

1

N
Tr(αiαi) = &%

'$r
r = C2 (3.1)

which is the only possible diagram that we can form. Note that we have pulled out the

factor of N coming from the trace over the identity matrix, which is a standard convention

employed in the literature. Now let us consider the case where n = 2, which will have two

different diagrams as follows

Tr(αiαiαjαj) = &%
'$rr r

r

Tr(αiαjαiαj) = &%
'$rr r

r

. (3.2)

However if we also keep track of the relative weighting of each diagram we see that the

first contributes a weighing of 2/3, whilst the second is 1/3. It is these weighting factors

which are important for the symmetrisation procedure. At this stage we want to turn our

diagrams above into something algebraic, since we know that they should correspond to

some function of the Casimir. In fact the first diagram is simply the direct product of two

copies of (3.1), and so this diagram is equal to 2C2
2/3 when we include the weighting factor.

The second diagram is more complicated, however we can remove one of the internal lines

using

&%
'$rr r

r

= (C2 − 4) &%
'$r

r (3.3)
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which reduces the diagram to C2(C2 − 4). If we add the contribution coming from both

terms then we find that
1

N
STr(αiαi)2 = C2

2

(

1 − 4

3C2

)

. (3.4)

What about the next order terms coming in at n = 3? There are five unique diagrams

contributing at this order, which are shown below

&%
'$rr

r

r

r

r

, &%
'$r

r
·

·
··

r

r

T
T
TT

rr , &%
'$rr r

r

T
T
TT

r

r

, &%
'$r r r

r

rr

, &%
'$r

r
r

r

r

r

where we have omitted the weighting factors of each diagram. The decomposition occurs

in much the same way as before and the final result can be written as follows

1

N
STr(αiαi)3 = C3

2

(

1 − 4

C2
+

16

3C2
2

)

. (3.5)

One immediate thing to note is that the leading term in these expansions goes like Cn
2 ,

which is in fact the only coefficient that gets picked out in the large N limit. The other

terms are clearly the sub-leading corrections we are looking for. At level n = 4, there are

18 different chord diagrams to draw, which becomes 105 diagrams at level five and so on.

Each corresponding value of n contributes a larger set of diagrams, much in the same way

as the Feynman expansion. Let us write down a series of definitions which help to simplify

things:

• Let I denote the number of intersections of a pair of chords.

• Let T denote the number of triple intersections of three chords.

• Let Q denote the number of quadratic intersections of four chords in the shape of a

box.

Every chord diagram D(n) can be written in terms of these intersection numbers as follows

D(n) = Cn
2 − 2ICn−1

2 + 2Cn−2
2 (I(I − 1) + 4Q − 2T ) + . . . (3.6)

where there are higher order terms which we are suppressing. It can be shown that these

terms can be summed to give the leading order terms for the symmetrised trace

1

N
STr(αiαi)n = Cn

2 − 2

3
n(n − 1)Cn−1

2 +
2

45
n(n − 1)(n − 2)(7n − 1)Cn−2

2 + . . . . (3.7)

If we regard this as a differential operator acting on some function of the Casimir such that

STr(αiαi)n = DCn
2 (3.8)

then we can see that

STrF (αiαi) =

∞
∑

n=0

FnDCn
2 = DF (C2) (3.9)
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where we write

D := N

(

1 − 2C2

3

∂2

∂C2
2

+
8C2

9

∂3

∂C3
2

+ . . .

)

(3.10)

where there are higher order terms that we have neglected. Therefore we see that the

leading order term is just N multiplied by the original function of the Casimir, which

exactly corresponds to the large N limit of the DBI action. The next to leading order

terms can be determined through the action of the differential operator.

Note that in the dual D5-brane picture we expect these corrections to correspond

to non-commutative deformations of the gauge field structure, which in principle can be

determined through the use of a star product on the world-volume. In what follows we will

restrict our analysis to solutions where the warp factor becomes constant in the IR, such as

in the KS geometry [21, 30]. This is not the most general case one could consider, but the

calculation of the corrections is hampered in this instance by the additional dependence of

the warp factor upon powers of the quadratic Casimir.

Typically in IR models of DBI inflation, the last 60 e-folds will be occur when the

branes move away from the tip of the throat, and therefore the warp factor will play an

important role. For the UV scenarios - which we can also include in this analysis, the

constant warping is required for the last 60-efolds of inflation to occur. Let us assume

a general form for the warp factor h(ρ) and calculate the full corrections to the DBI

Lagrangian including the 1/N terms. It will be useful to define the following variables

α = 1 − 4δhcC2

h

β = 4C2

(

δh2
c

h2
− δhcc

h

)

− 4δhc

h
(3.11)

where in this notation δhc corresponds to a derivative with respect to C2. However since

we know that h = h(ρ), and that ρ2 = λ2R̂2C2 through the definition of the physical radius

of the fuzzy sphere, we can write the derivatives of the warp factor explicitly in terms of

derivatives with respect to the inflaton field φ through the identification

δhc =
h′φ

2C2
. (3.12)

As an example let us consider the case where the metric is AdS5 × X5, and therefore the

warp factor can be written as follows h = φ/(
√

T3R), where R is the usual AdS scale. The

above expression then reduces to δhc = h/(2C2) and is therefore suppressed by a factor of

C2 with respect to the original function.

Therefore we can write the expression for the energy density with the 1/N corrections

as follows

ρ = NT3h
4
(

Wγ − 1 + V h−4 − F1(W,γ)
)

(3.13)
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where the function F1 is defined below

F1(W,γ) =
γ

6C2

(

W 2 − 1

W
(2C2β − 2α + α2 (W 2 + 1)

W 2
) +

2α2(W 2 − 1)(γ2 − 1)

W

)

+
γ

6C2

(

W (γ2 − 1)[α2(3γ2 − 1) − 2α − 2βC2]
)

+
γ

6C2

(

4C2
2

γh4
[δV ′′ − 8δV ′δhc

h
− 4V δhcc

h
+

20V h2
c

h2
]

)

+
8h′γ

3h

(

α(W 2 − 1)

W
+ Wα(γ2 − 1) +

2C2

γh4
[δV ′ − 4V δhc

h
]

)

+
8C2

3

(

Wγ − 1 +
V

h4

)(

3h2
c

h2
+

δhcc

h

)

(3.14)

Note that δV ′, δV ′′ corresponds to taking derivatives with respect to C2 here, and not the

inflaton field. The corresponding solution for the pressure may be written as

P = −NT3h
4

(

W

γ
− 1 +

V

h4
− F2(W,γ)

)

(3.15)

where the correction function F2 is defined to be as follows

F2(W,γ) =
1

6γC2

(

W 2 − 1

W
(2C2β − 2α + α2 (W 2 + 1)

W 2
) − 2α2(W 2 − 1)(γ2 − 1)

W

)

+
1

6γC2

(

−W (γ2 − 1)[α2(3γ2 − 1) − 2α − 2βC2] + 2Wα2(γ2 − 1)2
)

+
1

6γC2

(

4γC2
2

h4
[δV ′′ − 8δV ′δhc

h
− 4V δhcc

h
+

20V δh2
c

h2
]

)

+
8δhc

3γh

(

α(W 2 − 1)

W
− Wα(γ2 − 1) +

2C2γ

h4
[δV ′ − 4V δhc

h
]

)

+
8C2

3

(

W

γ
− 1 +

V

h4

)(

3δh2
c

h2
+

δhcc

h

)

(3.16)

These expressions clearly show the sensitivity of the solution to the warp factor, and

therefore we should restrict ourselves to specific backgrounds in order to understand how

the corrections alter the physics.

3.1 The limit of constant warping

The above expressions will clearly simplify when we assume constant warping, as in the

Klebanov-Strassler geometry. After careful computation, the respective energy and pres-

sure densities including the 1/N corrections can be written using parameterisation invariant

functions as follows

ρ = NT3h
4

(

Wγ − 1 +
V

h4
− γF1(W,γ)

6C2

)

P = −NT3h
4

(

W

γ
− 1 +

V

h4
− F2(W,γ)

6γC2

)

(3.17)
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where we have defined

F1(W,γ) =
2(W 2 − 1)(γ2 − 1)

W
+ 3W (γ2 − 1)2 − (W 2 − 1)2

W 3
+

4C2
s δV ′′

γh4

F2(W,γ) =
(W 2 − 1)2

W 3
+

2(W 2 − 1)(γ2 − 1)

W
+ W (γ2 − 1)2 − 4γC2

2δV ′′

h4

Clearly we see that the corrections are essentially all suppressed by powers of 1/C2 with

respect to the leading order solution. The only place where one has to be careful is with

the δV ′′ term, which in both cases is enhanced by a factor of C2. Of course for potentials

which are essentially constant over the regime of interest, as assumed in IR inflation, these

terms will vanish from the expressions above. Using these expression we can see that the

inflationary constraint upon the potential dominance is now modified to read

V ≫ h4

(

γ

(

W − F1(W,γ)

6C2

)

− 1

)

. (3.18)

If we set W ∼ 1 in the above expressions then the constraint on V in the large γ limit is

very weak due to the dependence on γ4/C2.

We could enquire about how the Lyth bound is now altered by the presence of these

1/N corrections, however things rapidly become complicated. In the notation of Lidsey and

Huston [18] we find that the correction term P3 is not a function, but rather a functional of

both P1(φ,X) and P2(φ,X) where X is the usual canonically normalised kinetic piece. As

such one cannot easily extend their analysis to this more general case without first picking

a restrictive gauge choice. Since the parameter space of multi-brane inflation is larger than

in the single brane case, we are able to find inflationary trajectories even when we include

these correction terms. What is more interesting from our perspective is to see how the

1/N terms alter the speed of sound and the non-Gaussian spectrum, since this is where

the signature of the model is important. Although the sound speed is not an observable

quantity, it is an important parameter to calculate since fluctuations enter the horizon

at kCs = aH The corresponding expression for the sound speed in a constantly warped

background is found to be

C2
s =

1

γ2

(

W − 1
6C2

[

(W 2−1)
W

{

(W 2−1)
W 2 − 2(1 + γ2)

}

− W (γ2 − 1)(1 + 3γ2)
])

(

W − 1
6C2

[

(W 2−1)
W

{

2(3γ2 − 1) − (W 2−1)
W 2

}

+ 3W (γ2 − 1)(5γ2 − 1)
]) (3.19)

which reduces to the usual solution C2
s ∼ 1/γ2 in the large N limit. Let us investigate

various limits of this expression in order to see if it imposes any conditional constraints

upon the dynamics. Firstly let us consider the solution when W ∼ 1, which would also

be the case for a single D3-brane in the throat. At leading order in a large γ expansion

(assuming γ2 ≫ 1) we find that

C2
s ∼ 1

γ2

(

2C2 + γ4

2C2 − 5γ4

)

+ . . . (3.20)

where the ellipsis denote subleading terms. For this to be non-negative we require that the

denominator satisfy a reality condition, which when combined with the large γ approxima-

tion implies that this expression is valid when N2 ≫ 7/2, which is a rather weak bound on
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the number of D3-branes. More interestingly we see that if we keep the Next to Leading

Order (NLO) terms in the sound speed then we can solve the reality bound as a constraint

on γ itself, which turns out to be

γ2
∗ <

6

15

(

1 +

√

1 +
15C2

6

)

(3.21)

which links γ directly to the number of branes. This behaviour is a strictly subleading

effect, and is not observed in the large N (or single brane) case. If we consider the non-

relativistic expansion in this limit, then again we see that C2
s → 1 as in ordinary slow-roll

models - washing out the effect of the 1/N corrections.

If we now consider the converse approximation, assuming slow roll from the start, then

the functional form of the speed of sound appears to admit a non-trivial solution which

picks up corrections even in the ’squeezed limit’ of zero velocity due to the non-trivial

contribution from the fuzzy potential

C2
s ∼ 1 + A

1 − A
A =

(1 + 3W 2)(W 2 − 1)

6C2W 4
(3.22)

however one can check that this is an imaginary solution unless we also take the W ≫ 1

limit. Another interesting limit is the one capturing the non-Abelian structure of the

theory, which assumes W ≫ 1. In this case we find that all W dependence drops out of

the sound speed leaving the following expression for all γ

C2
s ∼ 1

γ2

(

1 + γ4/(2C2)

1 − γ2(5γ2 − 4)/(2C2)

)

. (3.23)

However this clearly imposes a bound on the physical values of γ, since this expression has

a divergence at the critical limit where γ2
∗ = 0.4(1 +

√

1 + 10C2/4), which is very similar

to (3.21) therefore when analysing this limit we must again ensure that γ is below this

bound in order for the solution to be regarded as being physical. Of course we clearly

see that γ2
∗ increases as the number of branes increases, so we again find a non-trivial

dependence of the relativistic factor on N .

One interesting observation is that the effect of the 1/N corrections acts to ’squeeze’

the sound speed along the γ direction. The function is no longer monotonic in this limit,

indeed we find that the function decreases with increasing γ until it becomes small. However

because of the corrections the sound speed then increases to become large. Clearly this is

not what is required for inflation. However note that when the velocity is constant, γ is

also a constant which means that W becomes important. Since W effectively parameterises

a flat direction of the sound speed, we can still find inflation trajectories where the sound

speed is small albeit for fixed γ. Once we move to larger N , the squeezing reduces and we

find the sound speed is small over a larger range of γ values.

Given the expression for the sound speed in these backgrounds, we can also calculate fnl

- however this is a far more complicated function since the additional corrections introduce

new position/momentum interactions in the conjugate phase space. What we can easily

observe about the form of fnl is its behaviour as a function of γ, since it will be more
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sensitive to the new γ interactions. Since both the sound speed and the non-Gaussianities

can be calculated without imposing additional cosmological constraints, we will view N

as being a free parameter. Of course, as we saw in the first section, smaller values of N

typically require Ms ∼ Mp and a low inflaton mass scale and therefore will correspond to

finely tuned solutions. As one may expect the spectrum is sensitive to the precise value of

N and therefore we have plotted the non-Gaussianities for different numbers of branes as

shown in figures [1-4], where we have assumed that the potential is roughly constant over

the inflationary region.

For the first case with only ten branes, we are dropping terms of order 1/N2 which is

at the one-percent level. This should be regarded as being the absolute limit of our ap-

proximations. The backreaction will be reasonably under control in this instance provided

that M ≫ N is still satisfied. What it clear from the figures is that there exists a turning

point in the profile of fnl as a function of γ. Beyond the turning point, the spectrum

becomes large and negative due to the second term in (2.12) becoming dominant. This is

also the region where the sound speed is starting to increase again, and will therefore not

necessarily allow for inflation. However near the turning point we know that the sound

speed is small, and that inflation can occur along a trajectory through W,γ phase space,

therefore the corrections predict a maximal value for fnl which is sensitive to the number

of branes in the model.

As we increase N , the location of this maximum moves to larger values of γ and the

solution approaches the large N behaviour. Again this is because the sound speed is smaller

over a larger range of γ. The location of this maximum is roughly at γ ∼
√

N/2, which is

why it is not visible in the large N limit. Note that the maximum amplitude is bounded

from above due to the competition between the two terms, and is also much smaller in

amplitude than one may have anticipated. This is again a result of the corrections, and it

appears that larger N leads to a larger observable signal. Once we cross over a threshold

number of branes, the turning point is pushed to larger and larger values of γ and is

therefore essentially unobservable.

The equation of motion for the inflaton can be determined using the Hamilton-Jacobi

formalism, and the relevant energy-momentum tensor components. The Hubble equation

correspondingly becomes

Ḣ = −NT3h
4

2M2
p γ

(

W (γ2 − 1) +
1

6C2

(

(W 2 − 1)2(1 + γ2)

W 3
(3.24)

−2(W 2 − 1)(1 − γ2)2

W
+ W (1 − 3γ2)(γ2 − 1)2

))

where we have explicitly assumed that the δV ′′ term vanishes for simplicity. Rather than

solve the full equation of motion, let us consider a physical approximation where we assume

W ∼ 1 and that γ is large. In this instance we find the following expression at leading

order

φ̇ ∼ −
2M2

p H ′

Nγ

1

(1 + γ4/(2C2))
+ . . . (3.25)
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Figure 1: N = 10. Figure 2: N = 50.
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where we have explicitly assumed that the field is a monotonic function. This expression is

remarkably similar to the one derived in both the large N and single brane cases [11, 17].

As a result the corresponding fast roll variable governing its dynamics is given by

ǫ1 ∼
2M2

p

Nγ

1

(1 + γ4/(2C2))

(

H ′

H

)2

(3.26)

which is sensitive to the ratio γ4/(2C2). Since we know that the 1/N corrections imply a

non-trivial relationship between γ and N we will generally see that this correction term

is typically small, although non vanishing, and will therefore act to suppress the slow roll

parameter. With appropriate tuning one can easily find inflation trajectories, as in the

large N limit [17].

3.2 The limit of AdS warping

Another interesting case to consider is that of the AdS5 × X5 solution, where the warp
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factor goes like h ∼ φ/(
√

T3R). It is easy to see that α = −1, β = 0 in this instance and

the resulting corrections to the Fi functions can be written below as (assuming that the

potential is roughly constant over the regime of interest)

F1 =
γ

6C2

(

(W 2 − 1)(1 + 3W 2)

W 3
+

2(W 2 − 1)(γ2 − 1)

W
+ W (γ2 − 1)(1 + 3γ2) +

24V

γh4

)

+
8γ

6C2

(

−(W 2 − 1)

W
− W (γ2 − 1) − 4V

γh4

)

+
8

6C2

(

Wγ − 1 +
V

h4

)

(3.27)

F2 =
1

6γC2

(

(W 2 − 1)(1 + 3W 2)

W 3
− 2(W 2 − 1)(γ2 − 1)

W
− W (γ2 − 1)(3γ2 + 1) +

24γV

h4

)

+
8

6γC2

(

−W 2 − 1

W
+ W (γ2 − 1) − 4γV

h4

)

+
8

6C2

(

W

γ
− 1 +

V

h4

)

+
W

3γC2
(γ2 − 1)2.

This expression is far more complicated than the solution in the constant background

due to the explicit contribution from the warp factor. Note that the corrections in this

case are now also dependent on the inflationary scale - due to the appearance of V in

the above expressions. The fuzzy potential is now also a constant, given by WAdS =

(1 + 4R4/(λ2C2))
1/2, which explicitly depends on the ratio M/N2

The resulting expression for the sound speed becomes

C2
s =

1

γ2

(

W 4(−4γ2 + 3γ4 − 6C2) − 2W 2(γ2 − 1) − 1

W 4(8 − 24γ2 + 15γ4 − 6C2) + W 2(8 − 6γ2) − 1

)

(3.28)

which is again independent of both warp factor and potential. Note that when we take γ to

dominate, the sound speed approaches zero much like in the large N limit. Similarly taking

N → ∞ also reproduces the usual result proportional to 1/γ2. Unlike in the previous case,

the sound speed now has zeros located at the following critical values of γ

γ2
c =

2

3
+

1

3W 2
±

√
2

3W 4

√

2W 4 − 4W 6 + 2W 8 + 9C2W 8. (3.29)

The function becomes imaginary in between these zeros and should therefore be regarded

as being an un-physical region of phase space. The width of this region decreases as we

increase N , and is therefore more pronounced for smaller values of N . For intermediate

values of N , the unphysical region is small, and the sound speed is small over a large range

of γ.

If the fuzzy potential is taken to be large, which is the most likely scenario due to the

dependence on the flux/brane ratio, then it drops out of the expression altogether and we

are left with a two-parameter system - however the zeros of the function remain.

The effect of the zeros on the non-Gaussian amplitude are obvious, they give rise to

singular spikes in the N, γ phase space which are located at larger values of γ as we increase

N . This is shown in figure 5, where we assumed W ∼ 10 - although numerically the value

of W has little effect on the overall behaviour until it becomes very large. Away from these

spikes, the amplitude is always increasing monotonically as one would expect since the

corrections are washed out and shown in figures 6-8. Physically the spectrum implies that

the running of fnl with γ is bounded, either from above or below once the 1/N corrections
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Figure 5: Non-Gaussian amplitude in the

(N, γ) phase space, where W = 10.

Figure 6: Amplitude at W = 100.

come into play. In the solution with large N , the singular region occurs at very large values

of γ which already lie outside the observed experimental bounds.

Because the warping is not constant in this background, the additional field depen-

dence induces a contribution to the running of the spectral index. In the ultra-relativistic

approximation (which is unfortunately the only case that admits an analytic solution) we

find that

nnl ∼ 1 +
4γ

φ∗

√

3M2
p

NV (φ∗)
(3.30)

where φ∗ denotes the field at horizon crossing. Since inflation also demands that the

potential term dominates the kinetic term, this running should still be small regardless of

the precise form of the potential. Inflationary trajectories obey a similar slow roll expression

as the one in the constant warping limit, therefore implying that provided one tunes the

fluxes and the potential inflation will be generic.

We have seen in this section how the subleading corrections distinctly alter the sign of

the non-Gaussianities. In particular we note that the 1/N correction leads to a maximal

bound for the amplitude in constantly warped backgrounds whilst imposing restrictions

upon the size of the parameter space in AdS5 × X5 backgrounds. Although both models

are characterised by |fnl| ≫ 1, and thus may satisfy the bounds (2.10), the range of

validity is restricted once we include 1/N corrections. This is similar to the case examined

in [15] where the isocurvature perturbations lead to an unusual sign change relative to the

standard expression. This suggests that in general corrections to the large N DBI inflation

model will typically lead to new or refined signatures, which can be used as a more robust

test of inflation in string theory. This is especially evident for the finite N case [17] where

N = 2, 3, since there the backreaction is fully under control but the sound speed runs like

C2
s ∼ 1/(3γ2) which is even more suppressed relative to the single brane case, and therefore

the non-Gaussian amplitude is enhanced.
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with larger range of N .

4. Inflation via the representation cascade

The analysis of DBI inflation using multiple D3-branes, or a wrapped D5-brane, allows

us to evade many of the theoretical (and observational) constraints present in inflationary

model building. However besides the backreactive effects, there is also the issue of the scalar

potential for the inflaton field. Up to this point we have been rather cavalier about this, and

just assumed that the potential is generated in the usual manner through interactions with

D̄3-branes, D7-branes or symmetry breaking effects present in the compactification [11].

Whilst this is a reasonable assumption for the D3-brane scenario, one must ask about

the validity of this for the case of wrapped branes [19]. In the absence of a pure string

calculation, we are simply forced to insert the scalar potential by hand. However the non-

Abelian structure of the Myers action already contains a potential term, and so one could

enquire whether this could be used to drive a period of inflation [28].

Because the world-volume theory for coincident branes is non-Abelian we find that the

induced scalars are no longer singlets, but are instead promoted to matrices. The simplest

solution for all these problems is to use the symmetry of the transverse space and select

the scalars to lie in representations of SO(6). A particularly nice and simple choice, which

is the one that gives us a theory dual to a spherically wrapped D5-brane, is to assume the

scalars are valued in SO(3) ∼ SU(2). Typically we represent this through the ansatz

φi = R̂αi (4.1)

where αi are the N -dimensional irrep generators of SU(2) and R̂ is some parameter with

dimensions of mass. Because our theory is embedded in a non-commuting target space, we

see that our geometry is also non-commuting and because of the identification with SO(3)

we argue that the scalars lie on a fuzzy S2, the radius of which is defined by

r2 =
λ2

N
Tr(φiφi) = λ2R̂2C2 (4.2)
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where as usual we denote the Casimir of SU(2) by C2.

Previous work on brane inflation has implicitly assumed that the open string mode r

should be identified as the inflaton, leading to a sustained period of inflation. The change

of the warp factor as a function of r allows for DBI inflation to occur in these warped

models. However this justification already assumes that the scalar field is in the irreducible

representation of the gauge group. A priori there is no reason why this representation will

be selected, and so one could argue for solutions where the initial configuration was a

reducible representation. Of course we know that the irrep will lead to the smallest energy

configuration, so we would expect the reducible solution to cascade down to the irrep.

The representation flow itself will appear as a scalar field on the world-volume and could

therefore be an inflaton candidate. Indeed this would seem to be the most generic behaviour

given the context of the string landscape.

So our primary assumption in this section is that the branes are static and fixed at

some point in the IR of a warped throat. But the scalar fields are now initially in a reducible

representation. How do we model such a cascade? A simple example. which should be

representative of a more general class of solutions, is to take as an ansatz [33, 34]

φi = R̂
(

(1 − g(t))αi + g(t)J i
)

(4.3)

where now J i is a generator in a reducible representation of the gauge group, and we fix

the boundary conditions as g(0) = 1 and g(te) = 0, so that as time evolves the scalar flows

from the reducible to the irreducible representation. Dynamical transitions such as these

occur in a class of N = 1∗ SYM theories, where the choice of representation has important

physical properties. Since our branes are not dynamical we see that R̂ is independent of

time. A nice, and convenient parameterisation, is to choose J i such that it corresponds to

the spin j′⊕ j′ representation i.e the reducible representation is comprised of two blocks of

N ′ = N/2. Physically this means that our moduli space consists of two coincident fuzzy

spheres which coalesce to form a single sphere [33]. To further simplify things we denote

D2 as the Casimir of the reducible rep D2 = N2/4 − 1, and we will also assume that

Tr(αiJj) = 0.

Plugging all this into the coincident D3-brane action, for large N , we see that it can

be written as follows

S = −NT3

∫

d4ξh4
c

√

1 − r2(C2 + D2)ġ2

h4
c(C2(1 − g)2 + g2D2)

√

1 +
1

h4λ2

4r4
c

(C2(1 − g)2 + g2D2)

= −NT3

∫

d4ξh4
c(W (r, g)γ̃−1 − 1) (4.4)

where C2 is once again the effective Casimir of the irrep, whilst D2 is the effective Casimir

of the reducible representation and W (r, g) is the fuzzy potential. We have also included

the contribution from the Chern-Simons term in the last line above, and we have denoted

the fixed value of r by rc. Finally γ̃ is the obvious analogue of the kinetic contribution

to the action - not to be confused with γ in the previous sections. In general the full

inflationary dynamics will depend on both g, r as the branes move through the throat, and
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also undergo the cascade in representation space. However the analysis is complicated.

Note that we are not making any assumptions about the specific background here, all that

we are imposing is that the radial term is approximately constant during the cascading

phase.

One can see that as t → te the theory reproduces the action in the first section as it

should. We now couple this action to four-dimensional Einstein gravity. Because we are

assuming that the branes are not moving in the radial direction, then both the Chern-

Simons term and any scalar potential we can add to the action will simply be constants

and will drop out of the dynamical analysis, thus essentially we have a theory reminiscent

of the open string tachyon dynamics - where the only terms of interest arise through the

NS-sector alone. Analysis of the static potential shows that (aside from the boundary

conditions) there is a local maximum at gc = C2/(C2 + D2), which approaches 4/5 as N

increases. This is in fact a tachyonic point of the theory, but is smoothed out somewhat

once we turn on velocity terms. This provides a small barrier for the field as it rolls towards

g = 0. If the field has no initial kinetic energy - then the inflaton will sit near g = 1 and

the energy density (hence Hubble parameter) will essentially be constant and can drive a

sustained period of inflation. The field can tunnel through this barrier, and will eventually

flow towards its boundary point - which is indeed the lowest energy configuration as we

argued for. This is essentially a phase of ’Old Inflation’, although in a new context.

We see that the following general cosmological equations must be satisfied

H2 =
NT3h

4(Wγ̃ − 1)

3M2
p

ä

a
=

NT3h
4

3M2
p

(

3W

2γ̃
− Wγ̃

2
± 1

)

(4.5)

where the + sign corresponds to a D̄3-brane, whilst the minus sign is for the usual D3-

brane. Typically in DBI inflation we assume the existence of D3-branes. For IR inflation

this appears natural since one can assume that the initial conditions conspire to create D3-

branes after flux annihilation. For UV models, we are assuming that the scalar potential is

generated by D̄3-branes which sit in the IR of a throat to screen the relative D3-charge of

the RR fluxes. Therefore in order to realise a solution where we have coincident D̄3-branes,

we could assume that they are positioned at some point in the throat as a screen for the

fluxes. The uplifting of Minkowski vacua in the simplest KKLT scenario [27] employs such

a configuration (albeit with a single brane), however the ISD nature of the fluxes prevents

the branes from being dynamical objects.7 So this configuration is not as unnatural as it

may first appear.

From these expressions it follows immediately that inflation is only possible when the

following inflationary constraint is satisfied

W (3 − γ̃2) ≥ ∓2γ̃ → γ̃ ≤
√

1 + 3W 2 ± 1

W
(4.6)

7Although these terms explicitly break the N = 1 supersymmetry of the solution.
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where in the last step we wrote this explicitly as a constraint upon γ̃. Note that in the

limit of extremely large W satisfying W ≫ 1, this condition reduces to the non-relativistic

approximation that γ̃2 ≤ 3 for both types of branes. Note that these two limits are

compatible with each other and therefore there is a small inflationary window available.

Note the importance of the Chern-Simons term above.

For D3-branes we see that when W ∼ 1 the constraint collapses to γ̃ = 1 which implies

that the solution is non-dynamical. Clearly for this to be a physical solution we are forced

to fix the field at g = 1 which is the location of the metastable de-Sitter minimum. Thus

inflation will occur for as long as the system is in the reducible representation. Eventually

the field must tunnel out from this false vacuum via the Hawking-Moss instanton8 and

inflation will end rapidly. Let us estimate the probabilities and associated time scales for

this to occur. First it is necessary to re-write the action in canonical form which can be

achieved through the following field re-definitions

V (φ) = NT3h
4
c(W − 1), φ =

√

2NT3h4
cr

2(C2 + D2)

∫

√
Wdg

√

C2(1 − g)2 + g2D2

. (4.7)

As the potential can be seen to vanish when W = 1, we must consider the slow-roll

expansion of the DBI action in order to derive the above conditions. If we allows the

inflaton to have a small, but non-zero velocity, then this automatically forces W > 1

and a potential exists. Now the Hawking-Moss instanton solution treats the inflaton as

undergoing Brownian motion from the false vacuum to the global maximum. The tunneling

suppression probability is given by

P = exp

(

−24π2M4
p

V (φ0)
+

24π2M4
p

V (φ1)

)

(4.8)

where the false vacuum is defined at V (φ0). The result of Hawking and Moss is that because

of the Brownian motion there is not homogeneous tunneling, rather the homogeneity is

spread over the scale H−1. With our solution the tunneling probability is therefore well

approximated by

P ∼ exp

(

−
12π2M4

p λ2D2
2

NT3r4(C2 + D2)

)

(4.9)

where the exponent runs like N with our specific choice of representations. Therefore

the term in the exponent is large and negative, indicating that the tunneling suppression

probability is relatively small. This means that the field will most likely tunnel through

the small barrier than climb over it. The time for decay should therefore also be small and

is given by

tdecay ∼ tr exp

(

− 12π2M4
p λ2C2D2

NT3r4(C2 + D2)

)

(4.10)

where tr is the recurrence time defined through the relation tr ∼ exp(24π2M4
p /V (φ0)).

Clearly tdecay ≪ tr indicating that the solution will quickly tunnel from the false vacuum.

8This is because the barrier separating the two minima is relatively small in height, and thus the no-wall

approach provides a better description than the thin wall approximation [26, 27].
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Again the solution is exponential decreasing as a function of N with our representation

choice.

The fact that the inflaton rolls to its global minimum does offer the possibility of

avoiding the graceful exit problem that plagues models of old inflation. For all other

solutions, the field must be in a phase of slow roll satisfying 1 ≤ γ̃2 ≤ 3 which is a

very restrictive condition. Because of the field dependence of both potential and kinetic

terms, one would expect this inflationary phase to end rapidly - yielding at the very most

a single e-folding of inflation. If one views this optimistically then it may be possible to

obtain the requisite amount of e-foldings by assuming that there are at least 60 reducible

representations. In this case the field will roll down a potential, which is rather step like in

shape - each transition contributing a single e-folding. From the non-commutative geometry

viewpoint this would be interpreted as the steady coalescence of N/60 fuzzy spheres into

a single sphere. Indeed one could model such a flow by reverting to an ansatz of the form

φk = R̂

(

d
∑

α=0

Nαgα(t)Jkα + (Nα − gα(t))Jk(α+1)

)

(4.11)

where Nα is an appropriate boundary parameter for the flow through representation space,

and we are summing over representations from 0 . . . d, with the zeroth representation being

the fundamental one.

One may argue that this is not the most general dynamical process, since several

spheres may coalesce at the same time and thus prevent the system from generating enough

inflation. One may also argue that this would typically require N to be much larger than

originally presumed in order for there to be such a large number of reducible represen-

tations. This poses a problem since the back-reaction will inevitable be uncontrollable.

However one possible resolution to these problems lies in the fact that the model is ex-

tremely simple, relying on the fact that the brane stack is fixed in spacetime. This will not

be the most general solution, and in fact we expect both the representation cascade and

the open string modes associated with the radial embedding will combine to drive inflation.

This is analogous to a purely spinflation based model (see the nice discussion of this effect

in [22]), where the branes are fixed at some radial distance in the throat geometry but have

non-trivial angular momentum. The amount of inflation obtained is roughly the same in

both cases.

In the case of D̄3-branes with W ∼ 1 we find that γ̃2 ≤ 9 which is a much weaker

constraint on the flow velocity compared to the D3-brane case - although it falls into the

region of ’intermediate’ velocities i.e somewhere between slow roll and relativistic rolling.

In fact it can be seen that the maximal allowed value of γ̃ is a decreasing function of the

fuzzy potential. Let us consider this solution. Assuming that the velocity saturates the

bound on γ̃, and using the continuity equation we find that (up to a factor of 1/γ̃2 ∼ 1/9)

ġ ∼ − 16M2
p H ′F (g)

9NT3γ̃r2(C2 + D2)
(4.12)

where we have defined F (g) = C2(1 − g)2 + D2g
2 as the flow parameter. Solving for γ̃ as
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a function of g we can then estimate the primary slow roll parameter to be

ǫ1 ∼ h2
√

F (g)

C2 + D2

(

H ′

H

)2

. (4.13)

Since this is suppressed by the warpfactor, and the largest possible value of the remaining

prefactor is D2/(C2+D2) which is less than unity, the Hubble terms are the most important.

At leading order we then find the following bound on the Hubble scale during inflation

H2 >
9 × 10−2M4

p h2
c(5N

2 − 4)
√

F (g)

r2
c

(4.14)

where the lowest Hubble scale occurs around g ∼ gc as one would expect. This will also set

the scale of the tensor perturbations since they are proportional to H2 at horizon crossing.

As one would anticipate, the Hubble scale increases with the number of branes, but is still

modulated by the warp-factor. For solutions such as Klebanov-Strassler, the warp factor

is exponentially suppressed at the tip of the throat and therefore the Hubble scale will be

lower in throats with large flux quanta.

The equation of motion for the inflaton is given by

ġ2αβ

2
− 3Hαġ − V ′ ∼ 0 (4.15)

where we have dropped terms proportional to g̈ as is usual for slow roll models. To simplify

the expression we have used the following definitions

α =
2NT3h

4
cr

2
cW (C2 + D2)

C2(1 − g)2 + D2g2
, β = 1 − 2α′

α
(4.16)

and primes denote derivatives with respect to the inflaton. For solutions where ġ2 ≪
(W + 1)(C2(1 − g)2 + g2D2)/(Wr2(C2 + D2)), we can neglect the kinetic contribution to

the Hubble parameter and therefore we can explicitly solve for the inflaton to find

ġ ∼
√

3V

βMp



1 ±
√

1 −
βM2

p r4F ′

3h4π2l4sαW (W + 1)F 2



 (4.17)

which is a complicated function of the flow parameter. Numerically we can scan the space

of solutions, and we see that inflation is possible but only a handful of e-foldings are

generated. This suggests that our simple model must be modified in order for it to be a

viable candidate. There are at least two ways in which this could occur. Firstly as already

mentioned, we can allow for the field to be in a different initial representation so that

the cascade has more steps. If there are n different transitions each yielding Ne efolds of

inflation then we may anticipate that the model could generate nNe e-foldings during the

cascade. This could easily be tuned to satisfy the WMAP data [2]. The alternative is to

consider this as a multi-field model where the inflaton is some combination of g, r where r

represents the radial motion in the throat. Indeed our assumption that the branes are fixed

is in principle difficult to achieve due to interactions with the fluxes. Therefore we could

generally that the combined amount of inflation driven by dynamical branes and also by

the cascade, will easily satisfy the bounds. Moreover the constraints on the brane positions

will be slightly weakened due to the presence of the extra fields.
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5. Discussion

Cosmology has entered into a new era of precision data [2], and it is therefore imperative

that top-down models make some falsifiable predictions in order to distinguish them from

simple field theory phenomenology. The simplest models in string theory belong to the

class of DBI inflation, and their defining characteristic is that the sound speed of fluctu-

ations is greatly suppressed leading to potentially observable non-Gaussian signatures in

the CMB [11]. Whilst this has been an important result, recent work has determined that

we need to develop more intricate models in order to completely satisfy the current obser-

vational data. Extending these scenarios to include wrapped branes, or multiple branes

allows us to evade these constraints at the cost of losing control over the low energy theory.

The previous work [17] demonstrated new physical effects when one uses a finite number

of coincident branes, this is the best of both worlds in some sense - since we can still

control the backreaction of the branes upon the warped geometry, but also capture more

interesting world-volume effects. In this paper we have investigated the effect of the 1/N

corrections to the large N solution, since this is essentially a combinatorics issue [31] and

also overlaps with much of the recent work on wrapped configurations [19]. Specifically we

have seen how these corrections, suppressed in the large N limit, affect the speed of sound

and the non-Gaussianity (at least for the equilateral triangle modes) in backgrounds with

constant warping, and backgrounds of the form AdS×X5. In both cases we have seen that

the spectrum of non-Gaussianities has new features present in the non-relativistic (constant

warping) and intermediate (AdS5) limits. This indicates that the 1/N correction plays an

interesting role in the inflationary dynamics. We have also started to develop an alternative

inflationary scenario using a cascade through representation space to drive inflation. This

appears to be sensitive to the charge of the D3-brane and also imposes tight restrictions

on the inflaton velocity. For the usual D3-brane solution, we find that the field prefers

to tunnel from the false vacuum to the true vacuum and that the decay rate for such a

vacuum is relatively short and goes like e−N at large N . This is very much reminiscent of

old inflation, although because the field will still roll towards the minimum it may evade

the graceful exit problem. For D̄3-branes on the other hand, slow roll inflation appears

to be preferred - although we estimate that in order for the model to satisfy the COBE

bounds we require multiple transitions which may not be feasible.

There remains much work to do on building viable models of DBI inflation. The results

shown here and in [15] have shown that the non-Gaussianities can be significantly different

from the leading order term once you start to include sub-leading effects. This suggests

that other corrections could also become important, even in the slow roll regime [23] of

DBI inflation. These corrections could be particularly interesting for the finite N solutions

in [17], since the backreaction of the branes on the warped geometry is still under control

- however the sound speed has dramatically different behaviour to the large N and single

brane models. We must also develop better mechanisms for reheating [35] in these models.

Since the non-linear form of the action captures all the terms in the α′ expansion, one would

hope that there could be some stringy signature present in the standard model which lies

just beyond the current collider physics scale. This is important not only for aesthetics,
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but also because the string signature can again be tested. We hope to return to these issues

in the future.
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